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1 Introduction

In this paper, we will look at the behavior of curves on the projective plane. Although we will focus on results in
algebraically closed fields the following results only require that the intersection points exist in the projective plane.

1.1 The Projective Plane and Curves

We will start by giving algebraic definitions of affine and projective space. Throughout this paper, we will fix a field
k that is algebraically closed.

Definition 1.1. For a field k the n dimensional projective space is

Pn = {[x1 : x2 : · · · : xn+1]|x1, x2, . . . , xn+1 not all zero}/ ∼

Which is isomorphic to the space kn+1 − 0 modded out by the relation that relates [x1 : x2 : · · · : xn+1] ∼ [y1 : y2 :
· · · : yn+1] if and only if xi = tyi for t ∈ k − 0 for all i.

Proposition 1.2. The projective space Pn can be turned into the affine space An with the removal of any hyper
plane in Pn

Example 1.3. When n = 2 we call P2 = {[x : y : z]|x, y, z not all zero}/ ∼ the projective plane. Notice that in this
case we may remove the line z = 0 which means z ̸= 0 and so up to scaling we may fix z = 1, which are the points
of the form [x : y : 1] which can be interpreted as the affine space k2, with the bijection mapping (x, y) 7→ [x : y : 1].

Notice that because projective transformations take lines to lines we may assume any affine space can be inter-
preted as A2 = {[x : y : z] ∈ P2|z = 1} ∼= k2 up to linear transformation.

Therefore the line that is removed to create A2, which we may assume to be z = 0 can be interpreted as the line
at infinity, and behaves as a closure of A2 ∼= k2.

For example consider values a, b ∈ k and consider the limit of a sequence of points in k2 that is limt→∞(ta, tb).
In projective space we may interpret this limit as limt→∞[ta : tb : 1] and with rescaling by t we may notice that
limt→∞[ta : tb : 1] = limt→∞[a : b : 1/t] = [a : b : 0] which is a point at infinity, encoding the direction in which the
sequence approached infinity.

Now we will create definitions for curves in affine space which we can extend to curves in projective space.

Definition 1.4. A curve C in the affine plane A2 is the set of solutions to a polynomial equation f(x, y) = 0 where
f ∈ k[x, y]. We may denote such a curve as C : f(x, y) = 0.

As in the definition of projective space, projective curves must be invariant under the scaling of the entries.

Definition 1.5. A projective curve C of degree d in P2 is the set of solutions to a non-constant polynomial equation
F (x, y, z) = 0 where F is a homogeneous polynomial of degree d, that is F ∈ k[x, y, z] is the sum of degree d
monomials such that F (tx, ty, tz) = tdF (x, y, z).

Notice first that for every projective curve C : F (x, y, z) we can extract an affine curve by removing a hyperplane,
for example removing z = 0 and scaling z = 1. That is the affine part of F is the curve f(x, y) = F (x, y, 1) where any
projective point in affine space, [a : b : 1] we have that F (a, b, 1) = 0 if and only if f(a, b) = 0. This process is called
dehomogenization. Not all projective curves have affine components, for example, the curve z = 0 is only defined
at infinity and has no non-constant dehomogenized polynomial in k[x, y]. However with the removal of another line
(x = 0 for example), and therefore another perspective of A2, this curve would have an affine part.
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Points at infinity, when z = 0, correspond to the slopes of the curve or how the curve approaches infinity, this
can be formalized in a similar way as in the previous limit example.

Similar to the process of dehomogenization which extracts affine components of projective curves we can create a
process of homogenization that takes an affine curve of degree d to a projective curve of degree d with a correspondence
of its affine points. That is given an affine curve of degree d defined by the polynomial f(x, y) =

∑
i,j aijx

iyj we define

the degree d homogenization as the polynomial F (x, y, z) =
∑

i,j aijx
iyjzd−i−j . Notice that f(x, y) = F (x, y, 1),

and so both curves share affine points. Furthermore, by construction F (x, y, 0) is not identically zero for all x
and y, meaning z is not a common factor and so F does not contain the line at infinity z = 0. The processes of
homogenization and dehomogenization define a bijection between affine curves and projective curves that do not
contain the line at infinity z = 0.

1.2 Intersecting Curves

In studying curves there is often the question of the number of intersecting points.

Definition 1.6. Given two curves C1 : F (x, y, z) = 0 and C2 : G(x, y, z) = 0 we say that a point [a : b : c] is in the
intersection C1 ∩ C2 if [a : b : c] is simultaneously a point of C1 and C2, that is F (a, b, c) = G(a, b, c) = 0.

A similar definition can be made for affine curves. In general, we are only interested in the case where the number
of intersection points is finite, the case that two curves share no common components.

Definition 1.7. If k[x, y] is a UFD then we may factor a projective curve as F (x, y, z) = p1(x, y, z)p2(x, y, z) · · · pr(x, y, z)
into the product of irreducible polynomial factors pi(x, y, y) ∈ k[x, y]. We say that the irreducible components of C
are the polynomials pi(x, y, z) for all i. We say two curves have no common components if their irreducible factors
are distinct.

In our case where k is a field, k[x, y] is always a UFD.
It is often the case that intersections will include multiplicity, for example, these are the cases where two curves

share tangent lines. We may interpret the multiplicity to be the number of derivatives the curves share. Formally
we define this notion with local rings.

Definition 1.8. Let k be algebraically closed, then let K ≤ k(x, y, z) with elements that are rational functions of the
form Φ = F/G, with F,G being homogeneous polynomials of x, y and z of the same degree. For a point P ∈ P2, we
say that Φ is defined at P if G(P ) ̸= 0. And the local ring of a point P is the space OP = {Φ ∈ K|Φ is defined at P}.

Notice that for projective curves defined by polynomials F1, F2 an ideal of OP is defined as

⟨F1, F2⟩P = {F/G ∈ OP |F = H1F1 +H2F2} (1)

Where H1, H2 ∈ k[X,Y, Z] such that F is homogeneous of degree equal to that of G. We can also restrict these
constructions to the affine plane.

Proposition 1.9. If P = (a, b) = [a : b : 1] ∈ A then we may instead define K ≤ k(x, y) with elements that are
rational functions of the form φ = f/g, with f, g being polynomials of x and y. For a point P ∈ A2, we say that φ
is defined at P if g(P ) ̸= 0. And the local ring of a point P is the space OP = {φ ∈ K|φ is defined at P}.

Proof. These definitions coincide with definition 1.8 through the process of dehomoginization.

Likewise for affine curves defined by polynomials f1, f2 an ideal of OP is defined as ⟨f1, f2⟩P = OP f1 + OP f2
which agree with equation 1.

This then allows us to define the multiplicity of the intersection of two curves

Definition 1.10. For curves C1 : F1(x, y, z) = 0 and C2 : F2(x, y, z) = 0 and a point P ∈ P2 we have that

I(C1 ∩ C2, P ) = dim(OP / ⟨F1, F2⟩P )

And if P ∈ A2 we have the alternative definition I(C1∩C2, P ) = dim(OP / ⟨f1, f2⟩P ) where f1, f2 represent the affine
parts of F1 and F2.

Below we have given a few examples using this definition
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Figure 1: The intersection of C1 : x+ 1 = 0 shown in green and C2 : x2 − y = 0 in purple from example 1.11.

Figure 2: The intersection of C1 : x− y+2 = 0 shown in red and C2 : x2 + x− y+2 = 0 in blue from example 1.12.

Example 1.11. Consider the projective curves C1 : F1(x, y, z) = x+z = 0 and C2 : F2(x, y, z) = x2−yz = 0, where
C1 is a line and C2 is a quadratic. The restriction of both curves in the affine plane (from the removal of z = 0
and then scaling z = 1), where f1(x, y) = x + 1 and f2(x, y) = x2 − y is shown in figure 1. C1 and C2 intersect at
the affine point [−1 : 1 : 1] and the projective point [0 : 1 : 0] encoding that the curves go off to infinity vertically.
We will show that for the affine point P = (−1, 1), that I(C1 ∩ C2, P ) = 1. To show this it suffices to show that
⟨f1, f2⟩P = MP := {φ ∈ OP |φ(P ) = 0}, which can be done by showing ⟨f1, f2⟩P contains all degree 1 polynomials
that go through (−1, 1). To see this notice that (x − 1)(x + 1) = x2 − 1 and so (x2 − 1) − (x2 − y) = y − 1. This
means that x+ 1, y − 1 ∈ ⟨f1, f2⟩P which generates all polynomials that go through (−1, 1).

Example 1.12. Now we will show an example with an intersection of higher multiplicity to motivate an interpretation
of multiplicity. Consider the projective curves C1 : F1(x, y, z) = x − y + 2z = 0 and C2 : F2(x, y, z) = x2 + xz −
yz + 2z2 = 0, where C1 is a line and C2 is a quadratic. The restriction of both curves in the affine plane (from the
removal of z = 0 and then scaling z = 1), where f1(x, y) = x− y+ 2 and f2(x, y) = x2 + x− y+ 2 is shown in figure
2. C1 and C2 intersect at the affine point [0 : 2 : 1]. Notice that because x2 + x− y + 2− (x− y + 2) = x2 we have
that ⟨f1, f2⟩P =

〈
x− y + 2, x2

〉
P
. Notice that this means OP / ⟨f1, f2⟩P is spanned by the parallel classes of 1 and x,

and so has dimension 2. To see this another way we may consider the Taylor expansions of both curves with respect
to y, that is y = 2 + 1 · x and y = 2 + 1 · x + 1 · x2, where we see that both curves share a derivatives at the point
of intersection. This motivates that the intersection multiplicity counts the number of shared derivatives. However
this interpretation does not extend to all fields, such as finite fields.

Example 1.13. Now we will show an example with an intersection of multiplicity 3. Consider the projective curves
C1 : F1(x, y, z) = z3 + x3 − yz2 = 0 and C2 : F2(x, y, z) = z − y = 0. The restriction of both curves in the affine
plane (from the removal of z = 0 and then scaling z = 1), where f1(x, y) = 1 + x3 − y and f2(x, y) = 1− y is shown
in figure 3. C1 and C2 intersect at the affine point [0 : 1 : 1]. Notice that because 1 + x3 − y − (1− y) = x3 we have
that ⟨f1, f2⟩P =

〈
1− y, x3

〉
P
. Notice that this means OP / ⟨f1, f2⟩P is spanned by the parallel classes of 1, x and x2,

and so has dimension 3. We may also see that both curves share a derivatives and a second derivative at the point
of intersection. This again shows that the intersection multiplicity counts the number of shared derivatives.
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Figure 3: The intersection of C1 : 1 + x3 − y = 0 shown in purple and C2 : 1− y = 0 in orange from example 1.13.

The following are expected facts about the intersection multiplicity

Proposition 1.14. I(C1 ∩ C2, P ) is a non-negative finite integer and P ∈ C1 ∩ C2 if and only if I(C1 ∩ C2, P ) ≥ 1

Proof. A proof of the first part of this statement is given in propositon 2.7

Now we will explore the intersection of curves with Bezout’s Theorem

Theorem 1.15. (Bezout’s theorem) Let C1 and C2 be projective curves of degree n1 and n2 respectively with no
common components then ∑

P∈C1∩C2

I(C1 ∩ C2, P ) = n1n2

If every point in the intersection has an intersection of multiplicity 1 then it is the case that #(C1 ∩C2) = n1n2. In
all cases #(C1 ∩ C2) ≤ n1n2

We will prove Bezout’s theorem throughout the next section as outlined in [2].

2 A proof of Bezout’s Theorem

To prove Bezout’s theorem we first prove a series of lemmas restricting the curves to the affine plane, the points on
the curves in A2 and then extending the theorem to the projective case using the idea from proposition 1.2.

2.1 The Affine Case

Throughout the following lemmas, we will assume that C1 : f1(x, y) = 0 and C2 : f2(x, y) = 0 are affine curves in
A2 for some algebraically closed field k, with no common components, with n1 = deg(f1) and n2 = deg(f2). We will
also define the polynomial ring in two variables to be R := k[x, y] of which both f1 and f2 live and we will consider
the ideal ⟨f1, f2⟩ = Rf1 +Rf2. We will first look at the space R/ ⟨f1, f2⟩, which is a k-vector space.

Lemma 2.1. Restricting the curves C1 and C2, to A2 we find that

#(C1 ∩ C2 ∩ A2) ≤ dim (R/ ⟨f1, f2⟩)

Proof. Let P1, P2, . . . , Pm be the distinct points in the intersection C1 ∩ C2. Fix a point Pi and for any other point
Pj ̸= Pi we may construct a line ℓi,j(x, y) such that ℓi,j(Pi) ̸= 0 and ℓi,j(Pj) = 0 (such a construction could be the
line going through Pj that is perpendicular to the line determined by Pi and Pj). This allows us to construct a

polynomial hi(x, y) =
∏

j ̸=i ℓi,j(x,y)∏
j ̸=i ℓi,j(Pi)

, which satisfies that hi(Pi) = 1 and hi(Pj) = 0 for all j ̸= i.
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To prove the lemma we will show that the polynomials hi for all i are linearly independent in R/ ⟨f1, f2⟩. To see
that assume that

c1h1 + c2h2 + · · ·+ cmhm = g1f1 + g2f2, for g1, g2 ∈ R (2)

Notice however that for the point Pi we have that equation 2 gives us ci = 0 as hj(Pi) = 0 for i ̸= j by the
construction of hj . And so there are at least as linearly independent polynomials in R/ ⟨f1, f2⟩ as there are points
of intersection.

Lemma 2.2. Let Rd be the k-vector space of polynomials in R of degree ≤ d. The dim(Rd) = 1
2 (d + 1)(d + 2).

Furthermore for any non-zero polynomial f ∈ R, dim(Rdf) = dim(Rd)

Proof. Rd is the vector space spanned by all monomials of degree at most d. For any fixed degree k < 1 there are(
k+1
1

)
= k + 1 such monomials, which follow from a multi-choose combinatorial argument. This means

dim(Rd) =

d∑
k=0

k + 1 =

d+1∑
k=1

k =
1

2
(d+ 1)(d+ 2)

Now to prove the second claim we will construct an isomorphism between Rd → Rdf such that g 7→ fg. To show
this we need only show that fxiyj for all i+ j ≤ d forms a basis. This is a spanning set as the monomials span Rd,
and is linearly independent as the monomials are linearly independent, and in any linear combination, we may factor
out f .

Now we will look at the k-vector space Wd = {g1f1 + g2f2|g1 ∈ Rd−n1
, g1 ∈ Rd−n2

}. Notice that Wd contains
polynomials of degree ≤ n and so is a subspace of Rd.

Lemma 2.3.
dim(R/ ⟨f1, f2⟩) ≤ n1n2

Proof. Consider a collection of n1n2 + 1 polynomials g1, g2, . . . , gn1n2+1 ∈ R which we will show are linearly depen-
dent in R/ ⟨f1, f2⟩. First, let d be the maximum of n1+n2 and the degree of the n1n2+1 polynomials, and consider
the subspace Rd, which contains all the polynomials. We will show that the polynomials are linearly dependent in
Rd/Wd by dimensional arguments.

First notice that Wd = Rd−n1
f1 ∪ Rd−n2

f2 and because d ≥ n1 + n2 we have that any element h ∈ Rd−n1
f1 ∩

Rd−n2f2 can be decomposed as g1f1 and g2f2, and where it must be the case that f1|g2 and f2|g1, as f1 and f2 share
no common factors. And so f1f2 is a common factor of h, meaning h = g3f1f2 where g3 ∈ Rd−n1−n2 . This shows
that Rd−n1

f1 ∩Rd−n2
f2 = Rd−n1−n2

f1f2. Notice that this allows us to determine that

dim(Wd) = dim(Rd−n1
f1) + dim(Rd−n2

f2)− dim(Rd−n1
f1 ∩Rd−n2

f2)

= dim(Rd−n1
f1) + dim(Rd−n2

f2)− dim(Rd−n1−n2
f1f2)

and from lemma 2.2 we have that

dim(Rd/Wd) = dim(Rd)− dim(Wd)

= dim(Rd)− dim(Rd−n1f1)− dim(Rd−n2f2) + dim(Rd−n1f1 ∩Rd−n2f2)

=
1

2
((d+ 1)(d+ 2)− (d− n1 + 1)(d− n1 + 2)− (d− n2 + 1)(d− n2 + 2) + (d− n1 − n2 + 1)(d− n1 − n2 + 2))

= n1n2

Meaning for the polynomials g1, g2, . . . , gn1n2+1 ∈ Rd ⊆ R there must exists a non-trivial linear combination such

that
∑n1n2+1

j=1 cjgj ∈ Wd, as the dimension of Rd/Wd is n1n2. This also proves that because Wd ⊆ ⟨f1, f2⟩ that∑n1n2+1
j=1 cjgj ∈ ⟨f1, f2⟩ as well, meaning we there exists a non-trivial linear independence equation for R/ ⟨f1, f2⟩ as

well. And so dim(R/ ⟨f1, f2⟩) ≤ n1n2.

In the previous proofs, we have looked at curves restricted to A2, the affine plane and we have shown a weak
inequality that #(C1 ∩ C2 ∩ A2) ≤ dim(R/ ⟨f1, f2⟩) ≤ n1n2. Now we will work to strengthen this equality and then
extend it to all of the projective plane. First given a curve C : f(x, y) =

∑
i,j cijx

iyj = 0 where we want to analyze
the points at infinity of C. Assume that the degree of f is n and notice that when we homogenize f we get

f(x, y, z) =
∑

i+j=n

cijx
iyj +O(z)
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where O(z) denotes all terms with a z. In this case, to study points at infinity we will look at z = 0 where we find
that f∗(x, y) := f(x, y, 0) =

∑
i+j=n cijx

iyj . Because k is algebraically closed we may factor f∗ are a product of

linear terms giving f∗(x, y) =
∏n

i=1(aix + biy) for ai, bi ∈ k and ai and bi not both zero. This means the roots of
f∗ and therefore the points at infinity of f are when aix = −biy. Notice that the point (bi,−ai) and all multiples
satisfy this and so the point at infinity are of the form [bi : −ai : 0] for all i.

Lemma 2.4. Assume that the curves C1 and C2 do not meet at infinity. Then f∗
1 and f∗

2 share no common factors,
where f∗ denotes the sum of the terms of highest degree in f .

Proof. From the previous observation we noted that we could decompose f∗
1 (x) =

∏n
i=1(aix+ biy) for ai, bi ∈ k and

ai and bi not both zero. And likewise we could decompose f∗
2 (x) =

∏n
i=1(cix+ diy) for ci, di ∈ k and ci and di not

both zero.

Now we will assume that f∗
1 and f∗

2 do have a common factor meaning there exists some ℓ and k such that aℓ = ck
and bℓ = dk. And because the points at infinity of C1 are [bi : −ai : 0] for all i and the points at infinity of C2 are
[dj : −cj : 0] for all j we know that both curves intersect at [bℓ : −aℓ : 0] = [dk : −ck : 0]. The statement follows from
the contrapositve.

Lemma 2.5. Assume that for the curves C1 and C2 that f∗
1 and f∗

2 share no common factors Then ⟨f1, f2⟩∩Rd = Wd

for all d ≥ n1 + n2.

This lemma is proven in a rather interesting way, looking at the intersections at infinity to argue about the degree
of the functions at infinity.

Proof. First one direction is trivial, as all vectors inWd are of degree ≤ d and furthermore we know thatWd ⊆ ⟨f1, f2⟩
so we have that Wd ⊆ ⟨f1, f2⟩ ∩Rd.

For the other direction consider an element f ∈ ⟨f1, f2⟩ ∩ Rd, such that f = g1f1 + g2f2 for g1, g2 of smallest
possible degree. Notice that g1, g2 may be functions of an arbitrarily big degree, which would lead to the cancellation
in the sum. We will show that this need not be the case, so assume that deg(g1) > d− n1 and looking at the terms
of highest degree it must be the case that (g1f1)

∗ + (g2f2)
∗ = g∗1f

∗
1 + g∗2f

∗
2 = 0, as otherwise the degree of f would

be > d. Likewise we also know that deg(g1f1) = deg(g2f1) = m > d ≥ n1 + n2. Because f∗
1 and f∗

2 have no common
factors is must be the case that f∗

1 |g∗2 and f∗
2 |g∗1 as both f∗

1 and f∗
2 both divide g∗1f

∗
1 = −g∗2f

∗
2 . This means there

exists some function h1 and h2 such that g∗1 = h1f
∗
2 and g∗2 = h2f

∗
1 . Furthermore notice that this gives us that

h1f
∗
2 f

∗
1 = −h2f

∗
1 f

∗
2 , and because R as a ring has no zero divisors we know that h1 = −h2.

Using this construction we know that g∗1f
∗
1 + g∗2f

∗
2 = h1f

∗
2 f

∗
1 + g∗2f

∗
2 = 0 and so h1f

∗
1 + g∗2 = 0, meaning the

polynomial h1f1 + g2 has no deg(g∗1) terms and therefore deg(h1f1 + g2) < deg(g2). Along the same arguments we
can observe that g∗1f

∗
1 + g∗2f

∗
2 = g∗1f

∗
1 + h2f

∗
1 f

∗
2 = 0 and so g∗1 + h2f

∗
2 = 0, meaning the polynomial g1 + h2f2 has no

deg(g∗1) terms and therefore deg(g1 + h2f2) < deg(g1). Using this construction we can also observe that

(g1 + h2f2)f1 + (h1f1 + g2)f2 = g1f1 + h2f2f1 + h1f1f2 + g2f2 = f + f1f2(h1 + h2) = f

This contradicts that g1 and g2 were chosen minimally. And so there must exists choices of g1 and g2 with deg(g1) ≤
d− n1 and deg(g2) ≤ d− n2. So therefore f ∈ Wd

Lemma 2.6. Assume that the curves C1 and C2 do not meet at infinity. Then dim(R/ ⟨f1, f2⟩) = n1n2

Proof. First, because the curves C1 and C2 do not meet at infinity and from the lemmas 2.4 and 2.5 we know
that it must be the case that ⟨f1, f2⟩ ∩ Rd = Wd for all d ≥ n1 + n2. We also know that from lemma 2.1 that
dim(R/ ⟨f1, f2⟩) ≤ n1n2 so it suffices to show that dim(R/ ⟨f1, f2⟩) ≥ n1n2. Notice that in lemma 2.3 we know that
dim(Rd/Wd) = n1n2. So consider a collection of linearly independent vectors g1, g2, . . . , gn1n2

. And notice that any
linear combination of these vectors would have a degree at most d, and because there is no linear combination over
k that results in a vector in Wd = ⟨f1, f2⟩ ∩ Rd these vectors must also be linearly independent in R/ ⟨f1, f2⟩. This
means that dim(R/ ⟨f1, f2⟩) ≥ n1n2, proving the lemma.

Proposition 2.7. If C1 and C2 have no common components then for P ∈ C1 ∩C2 ∩A2 we have that I(C1 ∩C2, P )
is finite
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Proof. Fix a point P ∈ A2 and notice that for two functions g/h, g′/h′ ∈ OP we can rewrite them as gh′/hh′

and g′h/hh′ sharing a common denominator. This can be repeated inductively such that any collection of rational
functions share a common denominator. So consider a collection of rational function g1/h, g2/h, . . . , gr/h and notice
that any linear combination can be rewritten as a1g1/h+ a2g2/h+ · · ·+ argr/h = a1g1+a2g2+···+argr

h . And so if the
polynomials g1, g2, . . . , gr were linearly dependent in R/ ⟨f1, f2⟩, meaning a1g1 + a2g2 + · · ·+ argr ∈ ⟨f1, f2⟩ then it
would also be the case that a1g1+a2g2+···+argr

h ∈ ⟨f1, f2⟩P , and so the rational function g1/h, g2/h, . . . , gr/h would be
linearly dependent. This means by contrapositive that any collection of rational function g1/h, g2/h, . . . , gr/h that
are linearly independent in OP / ⟨f1, f2⟩P would result in the polynomials g1, g2, . . . , gr being linearly independent in
R/ ⟨f1, f2⟩. This shows that I(C1 ∩ C2, P ) = dim(OP / ⟨f1, f2⟩P ) ≤ dim(R/ ⟨f1, f2⟩) ≤ n1n2.

Now we want the inequalities we have built so far to include the multiplicity of the intersections, defined in
definition 1.10

Lemma 2.8. If C1 and C2 have no common components then∑
P∈C1∩C2∩A2

I(C1 ∩ C2, P ) = dim(R/ ⟨f1, f2⟩)

Proof. We will provide a proof sketch. First for the ≤ direction. There exists a well defined epimorphism

R →
∏

P∈C1∩C2∩A2

OP / ⟨f1, f2⟩P

f 7→ (. . . , f mod (f1, f2)P , . . . )P∈C1∩C2∩A2

Let J be the kernel of the space and therefore

dim(R/J) =
∑

P∈C1∩C2∩A2

dim(OP / ⟨f1, f2⟩P ) =
∑

P∈C1∩C2∩A2

I(C1 ∩ C2, P )

Notice also that ⟨f1, f2⟩ ⊆ J meaning dim(R/J) ≤ dim(R/ ⟨f1, f2⟩) proving the first direction. Now we need only
show that J ⊆ ⟨f1, f2⟩. Fix some f ∈ J and consider the ideal L = {g ∈ R|gf ∈ ⟨f1, f2⟩} and we will show that 1 ∈ L
which implies ⟨f1, f2⟩ = J . Notice first the L is an ideal which follows from the fact that ⟨f1, f2⟩ is an ideal, and so
if g1, g2 ∈ L then (g1 + g2)f ∈ ⟨f1, f2⟩ and for h ∈ R we have that hg1f ∈ ⟨f1, f2⟩. Likewise L has the property that
for all P ∈ A2 there exists some g ∈ L such that g(P ) ̸= 0, which can be shown, with the initial assumption that
1 ̸∈ L, leads to a contradiction that 1 ∈ L. And so L being an ideal containing 1, must mean that L = R, and so
this must imply that J ⊆ ⟨f1, f2⟩ proving the statement.

Now putting the previous lemmas together we have shown a weaker version of Bezout’s theorem

Proposition 2.9. If C1 and C2 have no common components and do no intersect at infinity then∑
P∈C1∩C2

I(C1 ∩ C2, P ) = n1n2

2.2 Curves that Meet at Infinity

Recall from proposition 1.2 that an affine plane can be defined by the removal of any line in P2 and therefore any
such choice of line, can be interpreted as the line z = 0 up to projective transformation. This means if C1 and C2 do
in fact intersect at infinity, or on the line z = 0 we need only change perspectives to a new line at infinity, in which
the curves C1 and C2 do not intersect.

Lemma 2.10. For projective curves C1 and C2 with no common components there exists a line L such that L does
not contain any of the points in C1 ∩ C2.

Proof. First we want to show that C1∩C2 is finite. Let L be a line that is not a component of C1 or C2, and consider
the affine plane A2 constructed by its removal we know that

∑
P∈C1∩C2∩A2 I(C1 ∩C2, P ) ≤ n1n2, meaning there are

only a finite number of points of C1 ∩ C2 not on L. Likewise because there are infinitely many lines, as k is its self
infinite there must exists a second line L′ that is distinct from L and shares no components with C1 and C2. And
similarly for L′ there must also be a finite number of points in C1 ∩ C2 not on L′. And because L and L′ intersect
as a single point the total number of points in C1 ∩ C2 must be finite.
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Given that C1∩C2 is finite and knowing that k is algebraically closed and therefore not finite its self we will show
that there is a line L not meeting any of the points of C1 ∩C2. There must exist at least one point on the line z = 0
that is not in C1 ∩C2 as z = 0 is not a common component, call it [β : α : 0] and let L be the line αx+ βy+ γz = 0
and consider the affine points of the form [x : y : 1], and pick γ to be any value in k that is no equal to −αx − βy
for all affine points [x : y : 1] in C1 ∩ C2. This is possible as k has infinitely many elements and C1 ∩ C2 has finitely
many.

Notice that such a line L must also not be a component of either C1 and C2, as otherwise there would be a
intersection point on the line. And now together with section 2.1 we can prove Bezout’s Theorem

Theorem 2.11. (Bezout’s Theorem) Let C1 and C2 be projective curves of degree n1 and n2 respectively with no
common components, then ∑

P∈C1∩C2

I(C1 ∩ C2, P ) = n1n2

Proof. By lemma 2.10 we know that there must exist some line L that does not contain any of the points in C1 ∩C2.
Use this L as the line at infinity and remove it to create the affine plane A2. Now using lemma 2.9 and the fact that
L is not a component of either C1 or C2 we know that the corresponding affine curve has the same degree and so we
get the result as desired.

3 Testing For Common Components

Often Bezout’s theorem can be used to determine when two curves are the same or share common components, even
in non-algebraically closed fields. Consider the two projective curves over the finite field F3 restricted to the affine
plane where z = 1.

f (x, y) = x2 + xy − x2y − xy2

g (x, y) = x2 + 2x− x2y − 2xy

We want to determine if these curves have a common component. Bezout’s theorem (assuming z is not a common
component of either curve) says that in F3 the algebraic closure of F3 there should be 9 total points up to multiplicity.

Immediately we may rule out the possibility that these curves are the same. Notice that f(1, 0) = 1 and
g(1, 0) = 0, however they may still contain a common component. We can test all point in F2

3 and find that the
points of intersection in the affine plane of which there are 6 are (0, 0), (0, 1), (0, 2), (1, 1), (1, 2), and (2, 1).

Now consider the field extension F9 = F3[x]/
〈
x2 + 1

〉
which effectively adds in the value x acting as

√
−1 = i.

This give us additional points of intersection: (0, i), (i, 0), (0, 1 + i), (0, 2 + i), and more. However notice that this
gives us 10 points of intersection meaning f and g must have a common component.
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